CONFERENCE SCHEDULE – DAY ONE

Tuesday, September 29 | All times listed in CDT

8:50	Welcome Kelly Senecal Convergent Science
9:00	KEYNOTE Even Blood Is Not Happy With Turbulence: Hemostatic Perspectives Choon-Sik Jhun Penn State University College of Medicine
9:30	Technoeconomic Analysis Framework: A Shrouded Wind Turbine LES Study Mahmoud Koraiem Stony Brook University
9:50	Numerical Evaluation of Spark Assisted Cold Idle Operation in a HD GCI Engine Emma Zhao Argonne National Laboratory
10:10	3D-RANS Study on Liquid Properties of Gasoline, Ethanol and Water Mixtures Tim Franken Brandenburg University of Technology Cottbus-Senftenberg
10:30	The Initial Flow Condition Influence on the Combustion Process in a CI Engine Michele Pipicelli Università degli Studi di Napoli Federico II (CNR - Istituto Motori)
10:50	Modeling High-Pressure Mixing and Combustion in Rocket Engines With CONVERGE David Rowinski Convergent Science
11:20	SPONSOR Tecplot
11:35	Break
12:10	KEYNOTE X-Ray Diagnostics for the Validation of Nozzle Flow and Spray Simulations
	Christopher Powell Argonne National Laboratory
12:40	Christopher Powell Argonne National Laboratory CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray Hengjie Guo Argonne National Laboratory
12:40 1:00	CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray
	CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray Hengjie Guo Argonne National Laboratory
1:00	CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray Hengjie Guo Argonne National Laboratory Using X-Rays and Machine Learning to Improve Internal Flow Simulations Tools Gina M. Magnotti Argonne National Laboratory Low- and High-Temperature Flame Analysis For Spray A and D Using RANS and LES
1:00 1:20	CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray Hengjie Guo Argonne National Laboratory Using X-Rays and Machine Learning to Improve Internal Flow Simulations Tools Gina M. Magnotti Argonne National Laboratory Low- and High-Temperature Flame Analysis For Spray A and D Using RANS and LES Fabien Tagliante Sandia National Laboratories Real Fluid Modeling in CONVERGE
1:00 1:20 1:40	CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray Hengjie Guo Argonne National Laboratory Using X-Rays and Machine Learning to Improve Internal Flow Simulations Tools Gina M. Magnotti Argonne National Laboratory Low- and High-Temperature Flame Analysis For Spray A and D Using RANS and LES Fabien Tagliante Sandia National Laboratories Real Fluid Modeling in CONVERGE Chaouki Habchi IFP Energies nouvelles Hot Surface Ignition Assistant for Aircraft Compression Ignition Engines
1:00 1:20 1:40 2:00	CFD Modeling of Fuel Injection via Coupling of In-Nozzle Flow and Ensuing Spray Hengjie Guo Argonne National Laboratory Using X-Rays and Machine Learning to Improve Internal Flow Simulations Tools Gina M. Magnotti Argonne National Laboratory Low- and High-Temperature Flame Analysis For Spray A and D Using RANS and LES Fabien Tagliante Sandia National Laboratories Real Fluid Modeling in CONVERGE Chaouki Habchi IFP Energies nouvelles Hot Surface Ignition Assistant for Aircraft Compression Ignition Engines Je Ir Ryu U.S. Army Research Laboratory LES of a Turbulent Spray Burner Using Thickened Flame Model and AMR

CONFERENCE SCHEDULE – DAY TWO

Wednesday, September 30 | All times listed in CDT

8:50	Welcome Back Elizabeth Favreau Conv
9:00	KEYNOTE Transport Challenges and Op Amer A. Amer Aramco Research Center
9:30	Piston Bowl and Cooling Gallery Design C Chaitanya Kavuri Caterpillar Inc.
9:50	Understanding Low Load Advanced Com Patrick O'Donnell Clemson University
10:10	Towards Advanced Modeling of Multi-Mod Sayop Kim Argonne National Laboratory
10:30	Development of CFD Models for Ignition Joohan Kim Argonne National Laborator
10:50	Development and Validation of Spray-Wa Roberto Torelli Argonne National Labora
11:10	Real-Fuel Injection for GDI Applications: I Lorenzo Nocivelli Argonne National Labo
11:30	Simulating Cycle-to-Cycle Variation in a G Eric Pomraning Convergent Science
11:50	SPONSOR R Systems
12:05	Break
12:50	Prediction of Cyclic Variability and Knock Ronald Grover General Motors
1:10	Developing a Methodology to Tailor Chen Anqi Zhang Aramco Research Center
1:30	Comparison Study Between Online and T Krishna Prasad Shrestha Brandenburg Ur
1:50	Recent Chemical Kinetic Mechanism Deve Henry Curran NUI Galway
2:10	Extending Tabulated Flamelet Models for A. Cody Nunno Argonne National Labora
2:30	Electromobility in CONVERGE Tristan Burton Convergent Science
2:50	CONVERGE Development Update: Versio Keith Richards Convergent Science
3:10	Closing Remarks Kelly Senecal Convergent Science

vergent Science
oportunities in Carbon Constrained World
Optimization for Heavy-Duty Engines
npression Ignition With Gasoline Using LES
ode Combustion Engines
Processes in Internal Combustion Engines
all Interaction Models for GDI Applications atory
: Nozzle-Flow and Ensuing Spray

GDI Engine With RANS and LES/TFM

k in a GDI Engine at High Speed and Load

mical Mechanisms for SI Combustion

Tabulated Chemistry Approach for SI engine Iniversity of Technology Cottbus-Senftenberg

elopments

r Compression Ignition Engine Applications atory